O'Neill Section 2.2

Exercise 5 - Suppose that β_1 and β_2 are unit-speed reparametrizations of the same curve α . Show that there is a number s_0 such that $\beta_2(s) = \beta_1(s + s_0)$ for all s. What is the geometric significance of s_0 ?

Proof. If β is a reparametrization of α , then $\beta'(s(t)) = c(t)\alpha'(t)$, $c: I \to \mathbb{R}^+$. If β is unit speed, then $||\beta|| = 1$. Fix $t \in I$. Apply the above facts to β_1 and β_2 to conclude (arguing with magnitude of the vectors) that:

$$\beta_1'(s_1(t)) = c_t \alpha'(t) = \beta_2'(s_2(t))$$

Then since t was arbitrary, we get that $\beta'_1(s_1(t)) = \beta'_2(s_2(t))$. Also note that: $\alpha'(t) = s'_i(t)\beta'_i(s_i(t))$ for i = 1, 2. Since $\beta'_1(s_1(t)) = \beta'_2(s_2(t))$ we have:

$$s_1^\prime(t)=s_2^\prime(t).$$

This gives that $s_1(t) + k = s_2(t)$. Let $k = s_0$. Defining $s_1 := s$ we get that $s_2 = s + s_0$. $\therefore \beta_1(s) = \beta_2(s + s_0) \ \forall s$ as desired.

The geometric significance of s_0 is that is just starts the curve at a different point along the curve.